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Abstract— This paper addresses the ongoing developments
of a haptic (in fact multi-modal) framework called I-T OUCH,
which serve two purposes. The first purpose is academic and
concerns the conception of a generic framework that is able
to allow researchers in haptics to prototype quickly computer
haptic algorithms and to do quantitative and qualitative
evaluations of their concepts. Nevertheless, the foundations of
I-T OUCH are radically different from existing commercially
available haptics libraries. Indeed, no haptic graph-scene is
defined and haptics is directly derived from the dynamic
simulation engine. We are providing a discussion on the
pros and cons related to this choice. The second purpose
is applicative and concerns a priori virtual prototyping
with haptic feedback in industry (automotive or aerospace).
Secondary we show that I-TOUCH flexibility allows creating
new application with haptic feedback in a simple manner.
Moreover, I-T OUCH is haptic device independent and this
will be demonstrated by connecting simply various active
haptic devices and passive ones. I-TOUCH is also made
flexible to imply other modalities rendering devices, such
as, obviously vision, but also 3D sound and tactile including
thermal feedbacks. This extension is made for the purpose of
psychophysics research investigations.

I. I NTRODUCTION

In the human-machine interaction and interface field,
the emerging of virtual reality techniques brings into light
the human-centered-design concept, which subsequently
highlights the major importance of the human sensory
capabilities other than the visual one. Providing that the
vision modality allows understanding the essential parts
of physical and science phenomena, the second important
sense in any physical manipulation is indubitably the haptic
sense which includes all the complexity of the kinesthetic
and tactile modalities.

The haptic interfacing general problem arises at two
levels:

1) the identification and the understanding of the human
haptic sense,

2) its integration to other sensory modalities for an
optimal system use.

The difficulty of haptic perception and interaction comes
from the very fact that this modality isactivesince it comes
from a direct physical interaction with the environment
(through contact and taction). Indeed, the haptic perception
and interaction is extremely associated with the human

motor functions. This is different from, for instance, vision
for which the information sampling does not alter its
physical support. The haptic perception and interaction
make use of a complex and yet not totally understood
flow and effort exchange phenomena of different physical
nature between the human and the touched parts of the
surrounding environment.

This fact poses a serious dilemma, since the haptic
device need to be active, it consequently needs to be
motorized in order to be able to constraint human motions.
Although some works demonstrated that haptic informa-
tion could probably be displayed in a passive way [1].
Yet, almost all existing concepts shape haptic displays as
compact robotic arms having various kinematics. Their
interfacing to a simulation requires to deal with stability
of the device and the transparency (i.e. the fidelity) of
the feedback which seem to be antagonistic, as in force
reflecting teleoperation [2].

Another problem occurs in the way the haptic informa-
tion is computed in the simulation engine and the way
the device is linked to the simulation. As we will see in
the next section, researchers tried also several schemes.
The very truth is that comparing to 3D sound feedback
and computer graphics, there seems to be no real standard
to perform the matter. Computer haptics research is still
active in this direction but we noticed that there is no tools
that allows one to make concrete evaluation of different
“bricks” proposed here and there. Indeed, as in computer
graphics and 3D sound, the feedback requires different
computation of different, somehow independent, modules
and their link.

Our aim is design computer haptics and control models
that can be implemented in the scope of multi-modal and
synergistic human-machine interfaces. This work concerns
more specifically the development of a computer haptics
framework, called I-TOUCH, where different approaches
of computer haptics (and other fields) can be experienced
and evaluated. The target applications are rigid bodies
prototyping for industry and design companies.

This paper starts with a discussion on actual computer
haptics libraries and present our speculative point-of-view
on this. It is followed by a description of the I-TOUCH

framework and our orientation in computer haptics. Be-



cause of haptics is to be used concurrently with other
modalities such as 3D sound and vision, its integration
coherency is also discussed. This is followed by the eval-
uation tools. Target applications are described next; we
will highlight the flexibility of I-TOUCH in creating haptic
applications. Some issues and preliminary experimental
results given by I-TOUCH are presented. The paper ends
with a conclusion and future work.

II. SPECULATIVE ANALYSIS ON COMPUTER HAPTICS

Existing commercialized computer haptics libraries,
such as GHOST1 of Sensable technology or formal
MAGMA, now ReachIn API from ReachIn2, are scene-
graph oriented. Indeed, in the case of GHOST, the virtual
objects (mesh set) that are involved in force feedback
computation need to be specified beforehand. This specifi-
cation engenders the virtual environment being composed
of “haptic polygon” (or triangle) meshes set and a non
haptic one. When the virtual probe, point or proxy, ma-
nipulated by the human operator via the haptic device,
comes into contact with the haptic set, built-in collision
detection and response force computation returns, based
on a penalty method, the reaction force is displayed to the
operator though constrained in appropriate directions the
force feedback device. In this method the specified haptic
set are somehow blended with the visual triangles through
the OpenGL library. The ReachIn computer haptics API
differs from GHOST mainly in the fact that the visual graph
scene and the haptic one are more independent. The other
advantage of ReachIn API is in its independance from the
haptic interface; which is not the case for GHOST since it
is dedicated to the only Sensable products.

Recent projects such as OpenHL (Open Haptic Library),
by analogy to the well known standard graphic library
OpenGL, or Chai3D3 took similar directions with an open
source software. The first open source project, OpenHL,
seem to be in astatu quostage, the second project, Chai3D,
is more ambitious since it is developed in C++ and is
specially designed for education and research purposes
offering a light platform open for extensions.

Yet the design philosophy of these haptic libraries poses
some limitations. First of all, they are all considering point-
based-interaction. Indeed it seems to be difficult to use
these libraries in the case of a more generic haptic frame-
work. Namely, actual applications requires haptic rendering
of complex virtual objects, as it is the case in automotive or
aerospace industry prototyping. Other applications require
manipulation of deformable objects like in some product
design in manufacturing or in interactive surgery simula-
tors. Of course, we are aware that the interaction can be
described by a set of “equivalent” points; one need however
to program this and make changes that will drastically
decrease performance. Just try them in complex scenarios,
in fact simple, where an object is manipulated instead of
a point.

1http://www.sensable.com/.
2http://www.reachin.se/.
3http://www.chai3d.org/.

Designing computer haptics on the basis of computer
graphics pipe analogy [3] rises fundamental physics con-
troversies. First of all, object’s mass and inertia can not be
directly rendered and “distributed” on the so calledhaptic
meshes: friction (static and dynamics ones), impact impulse
forces... are simulated on the basis of simplistic models.
These very haptic parameters are tuned and conceived as
special haptic effectsthat are blended with the contact
force computations. Other design such as voxel-based or
specific applications based softwares such as VPS4 show
evident limitation when being extended to a more generic
framework. The reaction force computation in VPS do not
obey any common elementary physics.

If this way was indubitably a necessary path to under-
stand and to promote the haptic technology while spreading
it to many applications, it shows now clear limitations to be
release as a standard, similarly to computer graphics and
3D sound rendering cases. In our opinion, the difficulties
come mainly from two points:

• the difficulty to convolve toward an uniform haptic
interface device;

• the difficulty in writing hardware independent com-
puter haptics.

Our approach to computer haptics differs from what is
actually considered by some developers such as Sensable,
Reachin, VPS, Chai3D and others. Indeed, we think that
using a specific haptic scene-graph together or separate
from the traditional polygon based graphic libraries is
adequate to point-based or polygon-based interaction but is
not generic enough. Actually, free motion, inertia, friction,
force fields... are implemented asspecific/special haptic
effects. For this reason and for rigor concern, we believe
that computer haptics may gain in efficiency if it could
be considered as part of the solver i.e. built-in part of the
virtual environment dynamic simulator engine. However,
if considered so, additional constraints must be taken into
account: mainly the real-time and the operator interactivity
issues. We noticed that the algorithmic complexity is
mainly concerned with two aspects:

• the collision detection computation, and
• the dynamic constraint computation.

Collision detection is a fundamental problem in nu-
merous domains [4] [5]. It is the bottleneck of every
physically based simulation and known to be very time
consuming. Collision detection methods can be split into
two categories: discrete and continuous. Most methods are
discrete ones: they sample the objects motions and detect
objects inter-penetrations. As a result, these methods may
miss collisions (tunneling effect). Moreover, discrete col-
lision detection requires backtracking methods to compute
the first contact time, which is necessary in constraint-
based analytical dynamics simulations [6]. Depending on
the object complexity, however, the computational cost of
backtracking may be unpredictably large, mainly because
estimating the penetration depth is a difficult problem, for

4http://www.boeing.com/phantom/vps/.



example when many triangles have penetrated or if the
object is concave or non-convex.

In haptics, the penetration problem is a major cause
of instability. As opposed to these methods, continuous
methods compute the first time of contact during the
collision detection [7]. This computation is inherently part
of the algorithm. While more suitable to robust interactive
dynamics simulations (to guarantee collision-free motions),
continuous methods are usually slower than discrete meth-
ods, and are often abandoned for discrete ones. As for col-
lision response computation, which in fact induces forces
(some of which will be rendered) there are several methods
also reviewed and analyzed in [7].

Since we design computer haptic on the basis of physi-
cally based simulation engine, several combination of exist-
ing or novel bricks composing the process of the reaction
force computation are possible. In this case however, all
the scene is haptic and haptic parameters such as mass,
inertia, friction coefficient... are already present for the
physics engine. To some extent, all the virtual environment
is haptic, since motion is related to forces. In order to
feedback haptic information to the user, all what one need
to specify is which virtual object is being grasped or
touched or manipulated: it will be called the proxy. Part of
the computed forces, namely those applied on the proxy are
fed back to the user operator through the haptic connected
interface.

The developed framework will investigate evaluations,
in the frame of haptic feedback, of existing or newly de-
veloped collision detection algorithms when coupled with
existing or newly developed physically based animation
methods. As suspected, preliminary coupling reveals some
difficulties in achieving the matter.

III. T HE I-TOUCH FRAMEWORK

A. Key concepts

We believe that computer haptics will gain in many
aspects in being developed dissociated from the interface.
We also strongly endeavors toward enrolling computer
haptic as part of the simulation run-time engine. Of course
the problem, in this case, is that we need a physically-
based simulation engine and some applications are not
necessarily embedded with it. In these last cases, we recall
that whatever the application is, as far as haptic feedback
is envisaged, collision detection and force computation
are required. Then force feedback quality relay on the
sophistication degree of the simulation engine. I-TOUCH

is based on this philosophy. It aims at providing a simple,
flexible, modular and easy to benchmark framework, which
would provide haptic experience while handling multi-
modal interaction.

Our conception brings however an interesting generic
issue: in I-TOUCH, haptic feedback is “disconnected on
demand” from the simulation: this is a key concept. Indeed,
implementation of such an issue is very challenging and
this challenge allows for a generic and a flexible use.
Haptic devices are thus completely separated from the

simulation engine. However, hapticinformation is the lot
of the virtual environment.

Thanks to this framework, we are now able to test dif-
ferent behavior models, along with new collision detection
algorithms and haptic paradigms.

B. Design of theI-TOUCH framework

The I-TOUCH framework is designed to be modular
from its core to its interfaces. Although it is still in the
development process, it already allows plug-ins (static
linking in program) of different behaviors models and
different collision detection algorithms. The framework
architecture is given in Figure 1.

The framework is divided in three main modules; each
of them is further subdivided in as many submodules as
needed:

• The core systemis responsible for handling the operat-
ing system, the configuration, and the basic function-
alities of a physically-based simulation. It provides a
basic scene graph for managing the various objects
that composes the virtual scene. This core system can
accept many simulation algorithms along with differ-
ent input methods. Classical mathematical methods
[8] [9] and structures are also provided, for the easy
prototyping/evaluation of new/existing algorithms.

• The input and output system. While the input system
needs to be flexible and needs to manage many
different inputs, the output system should ensure high
fidelity rendering along with adequate refresh rates
according to the addressed modality/output.

• The simulation systemis composed of the simulation
manager, and a set of simulation virtual objects. The
simulation system use the core system for standard
interaction with the computer and the user, and in-
put/output system for multi-modal interaction. Colli-
sion detection algorithms are part of the simulation
system.

The I-TOUCH framework is completely object-oriented.
This allows easy part replacement and improvements. It is
implemented in a pure standard C++, and apart from the
driver libraries, does not use platform dependent code. It
can be easily ported to Linux or MacOsX, however it is
designed to be best suited to MS Windows OS.

C. The core system

To facilitate benchmarking and evaluating of new con-
cepts/models, one needs an easy access to the configura-
tion, to the system and to the others components that are
not directly involved in the simulation. The core system
addresses these requirements. First of all, it provides an
easy configuration access for the simulation algorithms.
Since parametrization is very important for fast testing,
every aspect of the framework is parametrized. Making
this, is just as easy as declaring a variable in C++ and
making an equivalent variable in a given configuration
file. Configuration sets can be put together, thus creating
test cases. The configuration is stored in XML-type files
which permits easy extraction and manipulation of this data



Helpers classes

Debug, file access, 
configuration, xml ...

Timers and
Benchmarks

Vector maths,
quaternions …

core 
system

CSimulationManager

CSimulationObject

CHapticObject

VR Input and ouput systems

C6DInput

CPhantomInput

CVirtuoseInput

CKeyboardInput

CSpaceBallInput

Fig. 1. I-TOUCH framework architecture.

by third party programs. Also, the framework provides an
easy way to map XML. Moreover, an off-line simulation
viewer/creator is in the development process; it allows fast
previewing of scene, and alteration of objects parameters.
This viewer is shown in Figure 2.

Fig. 2. The I-TOUCH editor.

In addition to configuration tools, a file format for
holding together “geometrical” object properties has been
devised. This format is open and flexible, moreover, addi-
tional data can be included and be ignored if not necessary
to the simulation, even if it is an unknow data.

An importer and exporter have been written for 3DS-
Max5, along with C++ and C# libraries for loading effi-
ciently theses files. Moreover, data channels have name
identifiers, making easy to bind them to configuration
and/or simulation data.

5http://www4.discreet.com/3dsmax/.

System abstraction is also provided, to ensure portability.
The standard graphic library OpenGL is used for visual
rendering, together with its bundle of the latest hardware
embedded technologies, such as texture mapping, vertex
and pixel shaders to create stunning effects and visually-
reality-like environments. 3D viewing with stereo glasses
is fully supported. 3D positional audio is also available.
A GUI for the visualization of simulation parameters and
others properties is in the development stage.

At last, many helpers classes are provided for easy
prototyping and debugging of algorithms. Math, debug and
input abstraction are available in an convenient way (input
used for scene management is not the same that the one
that is being used for 6dof inputs). Debug output can be
redirected to console, for on-line analysis, or can be saved
in text or HTML files for easy off-line management.

D. The input and output system

The input and output system takes an important place
in this framework for obvious reasons. The framework is
very human-centered designed and should be able to handle
many different input devices, from simple keyboards to
passive haptic devices such as 6dof SpaceMouse to active
haptic displays such as the Phantom or the Omni6, the
Virtuose7, the Delta or the Omega8, etc. Moreover, some
of these inputs also outputs force feedback. It appears that
we need to “forward” inputs and force feedback back and
forth between the simulation system and the real world.

The maximum degrees of freedom of an object in the
simulation is 6 (an object is put in open space), therefore
there is a maximum of 6dof input in the acceleration space,
speed space, or position space. This gives a maximum of 18

6http://www.sensable.com/
7http://www.haption.com/
8http://www.forcedimension.com/



input information. For the feedback the sames rules apply,
giving 18 feedback channels.

The primary class used for input and haptic output
provides access to each of these 36 channels. But this
access is not effective unless a derivate class provides
actual processing of the requests from the simulation.
For example, force feedback sent to a keyboard is not
processed. However, actual force put on a space mouse
can be retrieved and used in the simulation. To let the
simulation engine know dynamically which capabilities an
input or an output actually has, a function is available in the
base class, and is overridden as needed. At last, the class
provides access to unlimited number of device buttons for
use in the simulation.

Since the simulation is completely parametrized, it is
not possible to foresee which object will be attached to
an haptic controller, and what the device capabilities of
this haptic controller will be. The mechanism presented
here permits “hot” plugging9 of different haptic devices,
and an instant usability in the simulation. A even more
interesting approach would be to encapsulate these class in
dynamic libraries, that would be loaded at the beginning of
the simulation or a given staring points of the simulation.
That would provide a way to support additional devices
that were not available before, without rewriting nor re-
compiling any part of the framework engine.

The visual output system is heavily based on OpenGL
and its latests extensions. Basically, objects are linked to
material properties (such as colors and textures maps) along
with optional vertex and pixel shaders. These shaders can
be used to greatly enhance the realism of the visual output.

E. The simulation system

This part of the framework is the most challenging one.
It is responsible for the behavior model of the scene. The
simulation system is divided into two parts: the simulation
manager that deals with calculus and algorithms, and the
simulation objects that are placeholders. The simulation
manager uses objects properties to drive its computations.

1) The simulation manager:The simulation manager
is the central piece of the behavior model. It implements
physics simulation laws. It uses the collision detection al-
gorithms and the input systems as an entry. The simulation
manager computes the next state of the system. Then,
multimodal output systems are used to reflect/project this
new state to the operator.

At the time of the writing, two simulation managers
have been successfully implemented: one that use con-
straints for physic calculations, and one that use bounce
physics10. These simulation managers require proximity
queries. While SWIFT++ [10] does provide proximity
query, it is only for one point, making it unstable used.
Therefore, we are developing a new collision detection

9In theory, this “hot” plugging would work even if the device was
attached while the simulation is running. However, most devices requires
initialization that is done at starting.

10Bounce physic has been less investigated than constrained physics.

algorithm with these new constraints in mind. The sim-
ulation operate on flexible frames per second, in order to
use maximum capabilities of the hardware. This also means
that simulation managers should (and in some extend are)
able to cope with low frame rates. The simulation loop
somewhat differs from a classical simulation loop, that is:

1- Initialization of different objects
foreach time stepδt(t) do

2- Read Haptic Device() (through input classes)
3- Calculation Of Desired Speed(Haptic Objects)
4- Non contact forces are applied to objects, but
their position is not yet affected
5- Contact points= Proximity Detection()
5- Compute Contact Forces()
7- Update Desired Speeds()
8- Update Position() // integration step
9- Multimodal Rendering()

end

Steps 2, 3, and 9 are part of the haptic proxy concept.
We are using energy conservative integration step in the

form of:
→

p (t + ∆t) =
→

p (t)+
→

s (t + ∆t)∆t −
1

2

→

a (t + ∆t)∆t2

where
→

p is the position,
→

s is the speed and
→

a is the
acceleration. This integration step was the most stable
yet speed effective for our experiments. Of course, other
integration steps can be used and evaluated in a simple and
transparent manner.

2) The simulation objects:The simulation objects are
conceived as “inert objects”, that is to say, they do not
make decision by themselves. Instead, the behavior part of
the simulation is left to the simulation manager. First, this
allows to have independence from data representation. This
greatly clarifies the way algorithms work. Then, from the
theoretical point-of-view, it ensures that the representation
(by representation, we mean visual, haptic and/or any
other) is not dependent of the behavior model.

We will end out this section by the following important
issue raised by I-TOUCH:
Remark The way a behavior model handles forces, con-
tact and collision should not affect haptic rendering. In
this framework, haptic objects are just standard object
attached to an haptic controller. The haptic proxy, then,
has to take care of exact representation of the forces. In
a similar way, object have a “visual rendering” device
that renders objects. The point here is independence, from
data representation to behavior model to haptic, visual and
3Dsound rendering.

IV. M ULTIMODAL INTEGRATION

One of the most challenging issues of I-TOUCH is
multimodal integration. Visual, auditive and haptic senses
have different refresh rates: from as low as 30Hz for visual
interaction, up to as high as 10kHz for the 3D sound
one. Integrating each of these modalities is not a trivial



task. Others tentatives tried through parallelization of the
computation on different computers. Here, we decided to
push the limits on focusing in using one computer, but this
unveils some problems as exposed later.

A. Simulation engine flexibility

The fact that the simulation engine is completely flexible
and modular allows the integration of different behaviors
models with the same multimodal rendering. However, the
simulation engine has to provide some information to the
output routines. For example, for the real-time 3D sound
rendering, contact information (and changes in contact
through time) are required. The immediate benefit of this is
that we can benchmark how well does a simulation engine
behaves with multimodal rendering. For example, bounce
models have difficulties in rendering contact information
with sound, while they provides excellent rendering of
bounce sounds.

B. Sound integration

3D positional audio, while not being as primordial as
haptic rendering in most prototyping applications, greatly
enhance the immersion of the operator in the simulation.
We have two methods for rendering 3D sound: real-time
rendering, and semi-real-time rendering.

The real-time rendering uses information directly pro-
vided by the simulation, such as changes in the friction
map to produce sound. It also uses object properties
such as resonance frequencies to computes contact sounds.
While this is the correct method for producing friction and
bounce sound, it suffers from several drawbacks. First of
all, it is very computational-time consuming, and, in a
system composed by only one processor, it can become
the bottleneck of the simulation (and take the place of the
collision detection!). Maybe relocating the sound compu-
tations could solve this problem. The other fact is that the
sounds generated are, for now, less “realistic” than the ones
produced by the second approach.

The semi-real-time sound rendering approach uses off-
line recorded sounds of different materials in contact.
These different sound are stored in a database according to
some material properties. They are used by the simulation
as they are and the only amplitude and/or frequency
modulation (pitch, volume...) are processed.

C. Visual integration

Relatively to the sound and the haptic rendering, the
visual one is the easiest. We can use the same geometry
as the one used for physics calculations, or a higher level,
smoother one for better rendering. Objects are linked to
rendering information, such as geometry, material and
alpha information, and pixel and vertex shaders. This
allows almost any rendering of the objects, from standard
Gouraud-shaded plastic look, to advanced Phong-shaded
semi-reflecting materials with bump mapping. Dynamic
lighting is also supported. The visual rendering is com-
pletely configuration controlled, so there is a great flexi-
bility in the rendering process.

D. Haptic integration

Classic haptic rendering usually involve a specific be-
havior model. Often, the haptic device data is trusted, in
the way that the position of the haptic controller in the real
world is believed to be the position of the haptic controller
in the virtual world (scale effect taken into account). Haptic
feedback used to be simple spring mass system linking
virtual and real positions11. Some works, such as Barraf’s
[11], use also spring mass system to obtain the position.

Our approach differs from the previous ones. Indeed we
are conceptually considering thatthe haptic devices (inter-
faces) interact with the simulation and not the reverse i.e.
the haptic device does not drive the simulation. Obviously,
haptic devices can induce a change in the course of the
simulation but they cannot compromise its integrity. To be
more clear, the simulation does not take as granted what
is needed from the input device and, in extreme cases,
these particular inputs are ignored. In fact, these enhances
considerably the stability of the interaction. For example,
when the operator actions are toward violating a given non-
penetration constraints, they are not considered integrally
(as is the case for classical computer haptics methods).
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Fig. 3. The new ramp used in place of plain spring

From the simulation part, the operator isrequestingthat
the user controlled virtual object moves to a place in the
simulation. The haptic proxy processes then computes what
would be the object’s speed if it would make the complete
move. In the case of free movement, no change is made
to this speed, so when the integration step is done, there
is resynchronization between virtual and real positions.
However, if the object is in contact, the simulation will
issue a force to balance the speed. At the integration step,
the speed will be reduced, and the two positions will
become shifted. In fact, most simulations try to match
real and virtual positions of the haptic controller. With this
method, this is not required. We can have unsynchronized
positions without losing stability. Of course, since the
human perception of motion is relative and not absolute,
the operator will be completely blurred and will not feel

11In addition, most simulation add a damping term, for stability
purpose. In our case, that was not even necessary.



the shift between the two positions if any. The formula
used to compute speed is the inverse of an the integration
step, that is:

→

v=

→

p
new

−
→

p
old

∆t

For the feedback part, we use a special devised spring
system, that reduce vibration noise induced by frequency
differences between the haptic and the physic simulation
loops. The haptic loop runs at 1kHz, whereas the physic
loop runs at 100Hz (even less sometimes, depending on
the complexity of the virtual scene and the simulation
scenario). The haptic proxy, through feedback, has in
charge to reduce the effect of position shifts between two
simulation steps. This is done by the spring curve given in
the figure 3.

This function profile allows adapting to the frame-per-
second rate in free motion, preserving the haptic interaction
when contact occurs. Experiments with users showed that
this type of haptic feedback did not induce any change
in the human-behavior or the performance when using the
haptic device.

The fact that haptic integration is not considered as a
special rendering allows new synergies between rendering
to be investigated. One example of this is the recently
implementedhaptic bump. As for visual bump mapping,
we can simulate rough haptic surfaces through haptic
bump12.

We tried two different approaches: height based forces,
and normal based forces. The basic principle is the same:
the force computed by the simulation engine is slightly
modulated by a term, which depends either on the height or
the normal. In our actual implementation, haptic bump does
only work with one contact point, but we are working on
extension to multiple points. As far as “ bump sensation”
is concerned, the normal based force give superior results.
With even a very slight modulation of the kinesthetic
force, the effect is surprisingly very present and gives the
feeling of a rough surface. Moreover, the bump map used
for haptic bump is exactly the same as the one used in
the visual bump, thus the two modalities match perfectly
and the rendering is coherent. The operator experienced
an enhanced quality of multimodal interaction. In the
near future, we will try to make haptic bump mapping
computation to take part in the hardware.

V. EVALUATION TOOLS

The testing of research projects is made easy with I-
TOUCH, however such a testing requires to analyze data
from the simulation. In I-TOUCH, every simulation variable
can be “tagged” from recording, this allows after-run
simulation analysis through a special tool (show in Figure
4).

For example, FPS data, or time taken to compute a frame
(much more speaking than FPS in regard to performance)

12A specific device is being developed to render surface tactile and
roughness informations [12]

Fig. 4. Example of frame rate monitoring data.

evolution can be viewed easily. Also, the debugging facil-
ities and text functions in I-TOUCH make it easy to dump
data. However, we want to go further, and new real-time
tools are in development. Such tools will render in real
time evolution of variables, in numerous manners (time
graphs, bars, standard text, etc.). Specific analysis tools
to simulation should also be included, such as automatic
reporting of number of contacts, physics calculation time,
time spent in rendering or in other tasks, etc. This will
create a complete and easy-to-use evaluation tool, in order
to accelerate further the development of test cases.

VI. A PPLICATIONS EXAMPLES

To prove the extensibility and flexibility of I-TOUCH, we
made practical test cases to show actual implementations
of the proposed concepts and algorithms.

A. Virtual scribble

The first application is the so calledvirtual scribble. The
purpose of this demonstration is to demonstrate how easy
it is to create and derive entire applications from I-TOUCH.
In virtual scribble, the haptic device (in our case, a Phantom
device) is hold like a pen. In the virtual world, a sheet of
paper standing on a desk is shown to the user. The user
can then use the virtual pen to write virtually (of course,
the Phantom is in fact in the open space). The following
steps were required to make this sample application:

1) Imports 3D models of a pen and a desk thanks to
3Dsmax and then use the exporter to createimdata
files.

2) Create two objects in the configuration file, either
with a text editor or with the offline scene explorer.
One of the object is the desk, and is marked as not
moving (infinite mass). Use the offline scene explorer
to check placement and object properties. Set textures
to the objects.

3) In the configuration file, bind the pen object to a
haptic controller (Phantom support is built-in).

4) In I-TOUCH, use a simple height-test to handle
collision (contact detection), or use a more complex



algorithm (height test was used in our case). Select
the default behavior model (constraint based) to
handle contact resolution.

5) Add the code to handle collision between the pen
and the desk. In our code, contacts points are saved
in a list and then rendered to screen. One possible
extension would to add scribble sound to the simu-
lation.

6) Run the simulation, and let children enjoy writing
practice!

Fig. 5. Virtual Scribble sample application.

A snapshot screen of virtual scribble application is illus-
trated in the figure 5. As we can see, the implementation
of this simulation does not require a great amount of I-
TOUCH internals. The fact that code can be added in
response to events will be in the future separated from the
main program and will be available as dynamic libraries.
This will allow customization of I-TOUCH without chang-
ing code.

B. Virtual prototyping

One of the main aims of I-TOUCH is virtual prototyping
(VP). VP is to be seen as a complementary tool to CADM
software techniques. It is the front end of a product life
management process taking on board constraints related
to manufacturing, utilization, and maintenance. To fulfill
human-centered designs, the VP architecture should allow
“digital mock-up” to be interactively explored, manipu-
lated, and tested in various usage scenarios. VP imple-
mentation is not an easy task. It involves the successful
integration of multimodal rendering with physically realis-
tic behavior model, at high refresh rates. In industry, model
precision is of prime importance.

We are currently developing a virtual prototyping case,
which uses our built-in collision detection, behavior model
and haptic proxies. Steps required to create such a program
are the following:

• Identify the virtual prototyping tasks and involved
objects.

• Import/Export 3D models of these objects from in-
dustry internal format (CADM software).

• Configure objects.
• Bind a haptic interface (PHANToM, Virtuose, etc.) to

the manipulated virtual object.
• Use default or specify algorithms for physics and

collision detection (the choice option is still under
development).

• Perform VP tasks within I-TOUCH.
• Measure what ever must benchmark (not yet envis-

aged).

This case does not differs really from the previous one,
however it has three big differences. The first one is that
we are treating a more complex scenario, which requires
more processing power. The robustness of the algorithms
(in regard to the number of polygons and contact points)
is of vital importance. Secondly, while in Virtual Scribble
physics/collision detection are not very important, here we
must have realistic devices. And, at last but not least, we
have many contacts point instead of only one. Currently,
very few haptic software handle multiple contact points,
and they are often sacrificing in others parts.

An illustration of this case is given in the figure 6.
The VP scenario consists in mounting/dismounting of a
window-winder motor in/out of a car door (the 3D models
are kindly provided from RENAULT car industry and the
CEA (French nuclear authority)). The operator can test if
the window-winder does really fit, and if it is possible to
put it in place, accounting for the shape of the door car.
What is gained here is the intuitiveness of the operation.
The CADM engineer disposes a powerful tool that allows
him quick changes of CAD models. Operation timing
can also be monitored as well as forecasting maintenance
operation procedure and eventual requested tools.

C. In development progress

We are currently investigating, through the use of I-
TOUCH, new haptic paradigms and interfaces. One of these
issue concerns thermal feedback interfacing. Thermal feed-
back would provide thermal exchange properties produced
by different materials when using bare hand interaction: for
example metal feels “colder” than the wood, which in turn
if often felt warmer than plastic. Through the interfacing of
thermal devices in I-TOUCH, we are trying to test different
thermal rendering algorithms. Here again, I-TOUCH our
work is mostly focus on mathematic models and coupling
than in software adaptation and change. This demonstrates
the modularity and the flexibility of I-TOUCH.

Following the haptic bump paradigm, we are also trying
to interface I-TOUCH with new haptic devices, which
would feed bumped surface in the real world [12]. Of
course, the coupling of haptic bump and visual bump will
remain unchanged. The haptic device abstraction will make
it easy to integrate the new device, which will produce
“actual” effect in place of the “simulated” haptic bump
through kinesthetic device.



Fig. 6. Virtual prototyping application, the car door is a courtesy of RENAULTc©. Left image show the scenario of a unmounting feasibility check
with haptic feedback using the Virtuose haptic device. The same image is illustrated right with the PHANToM as a haptic device.

VII. I SSUES RAISED BYI-TOUCH

A. On data models

In most simulations, objects are modeled by their sur-
faces that are meshed into a set of triangles. Most col-
lision detection algorithms make often use of convexity
properties, and assumes that virtual objects can be seen
as a union of convex sub-objects. This assumption, from
our experience, leads to more problems than it actually
solves. In the real world, very few objects are convex. This
leads, almost every time, to a decomposition into convex
objects [13]. This decomposition has inherent problems
at jointures, because special treatment has to be made to
handle “false surfaces” that did not exist in the initial
object. Furthermore, one of the main arguments in favor
of convex objects is that they permit only one contact
point between two convex objects. The trivial example of
a cube resting on plane shows that a simple plane/plane
contact exhibits more than one contact point. In the case
of constraint physics, more than one point for plane/plane
contact is mandatory. We believe that making a distinction
between convex and non-convex models is not viable in
the near future. Instead, we focus on methods that work
on arbitrary models [14].

B. On behavior models

One of the issue raised by haptic rendering is real-
time constraints. Because most of the haptic loops runs
at 1kHz, there is a need for fast simulation. Even with
a haptic proxy, we noticed that the simulation frame-per-
second dropped below 50Hz for common scenarios. It was
extremely difficult to efficiently use the haptic rendering.
Many simulation adapt to this haptic real-time requirements
by decreasing the precision of the physics, and often by
acting directly in the behavior model. One of the most well
known behavior model is the penalty method. This model
is flawed at the basis, because not only inter-penetration
(of course inter-penetration does not happen in the real
world, so it is discarded in virtual prototyping and in most

realistic physical simulation) is permitted, but it isrequired
for response. Many examples of invalid force computations
exists in the penalty realm. As a result, the blue object
does not move at all. One can argue this situation happen
because of heavy inter-penetration, but since this one is
required, there is a chance that situations like the one
showed here will eventually happen, even if the time step
is small.

For rigor concern we focused on constrained based meth-
ods. Constrained methods do not require inter-penetration
to compute reaction forces, they prevent it instead. The
fact that objects can not move into each other is translated
explicitly into unilateral constraints conditions on relative
speed, and absolute positions and forces. One of these
model is the one introduced by Sauer and Schömer, which
has been adapted in one of our scenario. This model trans-
lates the non penetration problem into a LCP13 formulation,
that can be solved by many different algorithms. In this
model, a foresee step is made, which parametrizes the next
positions and speeds of objects by the forces applied to
contact points. Then it uses the fact that for a contact, one
of the contact force or the relative contact speed is null,
while the other is not. The final complementary conditions
of this model is:

N
T
J

T
M

−1
JN∆tf+N

T
J

T (ut+∆tM−1
fext) ≥ 0 ⊥ f ≥ 0

whereN, J are used to transpose mass and inertia matrix
M to contact points,f and fext are respectively contact
forces and external forces, andu is the speed vector at
instantt. We solved this LCP by using the Lemke algorithm
provided in [15].

This model gives good results, if the collision detection
step (that would be more a “proximity detection step”)
provides enough information. However, most current al-
gorithms do not provide such information. The fact is,
it is very uncommon (and much more difficult) to ask

13L inearComplementaryProblem



for proximity, opposed to intersection. This is why most
software packages reports only collision detection (and it
is often in the form of a yes/no answer, the interpenetration
depth is not often available). In addition, the packages that
report proximity information only report one point, which
is is course insufficient in a plane/plane contact. What we
need here is a algorithms that reports all “contacts” points,
that is a sort of contact topology. This strengthen a lot
subsequent algorithms. Due to numerical errors, it is also
necessary that such a package account for jitter and use
numerical thresholds to determine the contact topology.
Such a software package is currently in development at
the LSC.

VIII. C ONCLUSION AND FUTURE WORK

With this work, we developed a new approach to han-
dle computer haptic simulations. We conceive that haptic
virtual objects are to be considered in the simulation like
any other objects, with no more and no less rights. This
enrolls the haptic rendering computation as part as the
physically-based simulation engine which compute contact
forces based on a close external force/acceleration/motion
loop. The fidelity of the haptic rendering depends on the
sophistication of the simulation engine which are built on
the basis of different bricks such us the used physical
equation formulation, the numerical integration method,
the collision detection algorithm, etc. To prototype and
evaluate these bricks, we build I-TOUCH a multimodal
algorithm benchmarking framework and we target applica-
tions that are known to be complex, like virtual prototyping
in industry.

Further work is oriented toward refining I-TOUCH

through its multimodal component to serve also as a
psychophysics evaluation tool. Progressively our aim is to
evolve it to a complete piece of software that can serve
haptic research.
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